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Multistate recapture models: modelling
incomplete individual histories

J. D. LEBRETON & R. PR ADEL, CEFE, CNRS, Montpellier, France

abstract Multistate capture- recapture models are a natural generalization of the usual

one-site recapture models. Similarly, individuals are sampled on discrete occasions, at

which they may be captured or not. However, contrary to the one-site case, the individuals

can move within a ® nite set of states between occasions. The growing interest in spatial

aspects of population dynamics presently contributes to making multistate models a very

promising tool for population biology. We review ® rst the interest and the potential of

multistate models, in particular when they are used with individual states as well as

geog raphical sites. Multistate models indeed constitute canonical capture- recapture models

for individual categorical covariates changing over time, and can be linked to longitudinal

studies with missing data and models such as hidden Markov chains. Multistate models

also provide a promising tool for handling heterogeneity of capture, provided states related

to capturability can be de® ned and used. Such an approach could be relevant for

population size estimation in closed populations. Multistate models also constitute a natural

framework for mixtures of information in individual history data. Presently, most models

can be ® t using program MARK. As an example, we present a canonical model for

multisite accession to reproduction, which fully generalizes a classical one-site model. In

the generalization proposed, one can estimate simultaneously age-dependent rates of

accession to reproduction, natal and breeding dispersal. Finally, we discuss further

generalizations Ð such as a multistate generalization of g rowth rate models and models for

data where the state in which an individual is detected is known with uncertainty Ð and

prospects for software development.

1 Introduction

The idea of taking account of geographical sites in capture- recapture analysis dates

back to Chapman & Junge (1956) and was developed by Darroch (1961) (see
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review by Seber, 1982, p. 431 þ ). The situation was that of a closed population

over two dates of sampling, i.e. a generalization of the Lincoln- Petersen index to

a geographically strati ® ed population. A much more general situation was covered

by Arnason (1972, 1973) with three dates, 2 and s sites in the 1972 and 1973

papers, respectively, and both time-dependent recruitment and mortality. This

model, later treated in its full generality (k dates, s sites) by Schwarz et al. (1993)

in parallel to multisite models for tag-recovery data, is thus a natural generalization

of the usual one-site Jolly- Seber model ( Jolly, 1965; Seber, 1965). Similarly,

individuals are sampled on K discrete occasions, at which they may be captured or

not. However, contrary to the one-site case, the individuals can move within a

® nite set of sites, or states, between occasions.

Arnason’ s pioneering model remained little used for a long time, probably

because its interest was not fully realized, because it seemed to have limited

robustness as a consequence of its large number of parameters (Viallefont &

Lebreton, 1993), and because it remained diý cult to use in practice in the absence

of explicit estimates for K > 3 and of software for numerical estimation. The

development of software for constrained models, such as MSSURVIV (Brownie

et al., 1993) and MARK (White & Burnham, 1999), permitted robust analyses,

initiated by Hestbeck et al. (1991). Nichols et al. (1994) opened the way to further

applications by considering individual states more generally than geographical

position. To follow the traditional vocabulary for discrete dynamical models such

as Markov chains, and to avoid the idea of deterministic assignment of individuals

inherent in other contexts with the word stratum, the name `multistate models’

seems preferable to `multistratum models’ (Pollock, personal communication). The

growing interest in spatial aspects of population dynamics (Hanski & Gilpin, 1991)

and in individual variability (Clutton-Brock, 1988) is one of the main reasons that

presently make multistate models a very promising tool for population biology.

Nichols et al. (1993) and Nichols & Kaiser (1999) review further works devoted

to the estimation of dispersal.

The purpose of this paper is to review the state-of-the art for multistate capture-

recapture models, and the potential for further development. We will ® rst present

the basic principles of the multistate equivalent of the survival part of the Jolly-

Seber model (Section 2), and then examine its biological relevance (Section 3),

already well illustrated in the literature. We will go on by exploring non-standard

applications (Section 4) that make multistate models a general framework for the

treatment of individual recapture data. These non-standard cases comprise mix-

tures of information (Lebreton et al., 1999) and multisite accession to reproduction

(Lebreton et al., in preparation). However, several numerical and statistical issues

(Section 5) still have to be explored before the full potential of multistate models

can be used. We then discuss further generalizations presently under study (Section

6) and some perspectives. While many of our comments will be developed for live

recapture models, and will be subject to our personal bias, they apply, in general,

also to tag-recovery models (Schwarz et al., 1993).

2 Principles of multistate models

The multistate Arnason- Schwarz model (Arnason, 1973; Schwarz et al., 1993)

considers capture- recapture histories over K occasions and s sites. The capture

histories can thus be represented as a series of 0 (individual not captured) and,

say, integer values i (i 5 1, . . . , s), designating for each capture the state where it
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Table 1. Recapture histories and typical probabilities in one-state and two-state recapture models

Situation One state Two-state

Basic model Cormack- Jolly- Seber model Arnason- Schwarz model

(Cormack, 1964 ; Jolly, 1965; (Arnason, 1973; Schwarz et al.,

Seber, 1965) 1993)

An example of Capture history 0101100 0102200

of an individual

Survival or Survival/Transition Time dependent u 1 , u 2 , . . . u K 2 1 State (superscript) and

probabilities Time (subscript) dependent

u 11
1 , u 12

1 , . u 21
1 , u 22

1 , . u 11
2 , . . . u 22

K 2 1

Capture probabilities Time dependent p2 , p3 , . . . pK State (superscript) and

(1 2 p denoted as q) Time (subscript) dependent

p
1
1 , p

2
1 , . p

1
2 , . . . p

2
K

Probability of capture history u 2 q3 u 2 p4 u 3 p5 v 5 ( u 11
2 q

1
3 u 21

3 + u 21
2 q

2
3 u 22

3 ) p
2
4 u 22

3 p
2
5 v

2
5

the terms v are more involved

than in the one state case

took place (Table 1). We will present the classical case of individuals surviving,

and moving across states over time, conditional on initial releases, with a time

dependence in parameters, i.e. the multisite generalization of the Cormack- Jolly-

Seber (CJS) model.

The parameterization must take account of possible movements between the

states: the survival probabilities } k are replaced by survival-transition probabilities

}
i j
k . The indices i and j ( 5 1, . . . , s) indicate states (of arrival and departure) and

the index k( 5 1, . . . , K ) indicates occasions of capture. The recapture probabilities,

which are time-dependent in the one-state case, become time and state dependent

in the multistate one. When compared with the CJS model, the number of

parameters jumps from 2(K 2 1) to s(s + 1)(K 2 1). With ten occasions and three

states, the change is from 18 to 54, with 20, from 38 to 114. It seems natural to

expect more problems of stability of estimation, precision of estimates, e þ ects of

sparseness on tests and identi® ability of parameters: in general, multistate models

will be more demanding in terms of data than single-state models. At the same

time, they may still be the only sensible approach to many biological questions.

The probability of an individual capture history must account for all possible

movements, and is clearly more involved in the multistate case than in the single

state one. In the example of Table 1, at time 3, the individual can be either in state

1 or in state 2.

The survival transition probabilities can be rewritten as the product of a

conditional probability of survival and of transition probabilities. For instance, with

survival conditional on the departure state denoted as u i
k , the survival-transition

probability }
i j
k is the product of the survival probability and of a transition

probability c i j
k as (Hestbeck et al., 1991):

}
i j
k 5 u

i
k c i j

k

The c i j
k are probabilities of movement, conditional of survival. Further ways of

separating the survival and movement are developed by Joe & Pollock (this issue).

Since the survival transition probabilities depend only on the last state reached by

the individual, and not on the past, the movement model is Markovian. This

encourages the use of matrix notation, a traditional and powerful tool for this type

of model (Bailey, 1964, p. 3). The matrix W k 5 [c i j
k ] is column stochastic, i.e. the
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c parameters are redundant since R jc
i j
k 5 1. In accordance with traditional matrix

notation, we assume c i j
k is a probability of movement from j (column index) to i

(row index).

The basic model presented above assumes that the fate of an individual does not

depend on its past beyond the last occasion. The individuals will be considered as

independent to obtain multinomial distributions. The model belongs then to the

wide class of `product-multinomial models’ . As usual for many models for discrete

data (McCullagh & Nelder, 1989) estimation is, in general, based on maximum

likelihood, with iterative minimization of the deviance equal to minus twice the

log-likelihood. Matrix notation alleviates a great part of the burden of writing down

the likelihood. The likelihood is indeed an exact matrix generalization of the CJS

likelihood (Brownie et al., 1993), provided adequate matrices, such as Pk 5 diag( pk
i )

are used (see for example, Nichols et al., 1993, p. 270). Matrix notation in the

closed population model over two occasions, developed by Darroch (1961), leads

also to an exact matrix generalization of the Lincoln- Petersen index (Seber, 1982,

p. 433). This clearly indicates that many more existing one-state models could be

generalized. The matrix notation is also very convenient for developing software

for multistate models in high level languages such as Matlab (Almeras, 1996;

Lebreton et al., 1999). In all cases, provided the redundancy in parameters it

induces is managed, one can systematically add a `dead state’ to any multistate

model (Lebreton et al., 1999). Even if this state is not observable, this makes the

U k 5 [ }
i j
k ] matrix column stochastic. The calculation of the likelihood reduces then

to products of U , P and I-P, the v terms, i.e. the probabilities of never been

captured again, becoming inherent in these matrix products (Caswell, 2000,

pp. 138 - 140; Fujiwara & Caswell, in preparation). This trick is also valid for the

one site CJS model, viewed as a two-state (alive- dead) model.

The similarity with the CJS model and the rapid increase in the number of

parameters with the number of states and occasions (Viallefont & Lebreton, 1993)

lead naturally to Generalised Linear Model (GLM) ideas (as for the CJS model;

Lebreton et al., 1992) to develop constrained (e.g. constant parameter) and further

generalized (e.g. age dependent) models. Presently, this is the basis for the wide

range of multistate models that can be ® t by the maximum likelihood method using

MARK (White & Burnham, 1999) which expands to a much wider class of models

the philosophy developed in SURGE (Clobert & Lebreton, 1987; Pradel &

Lebreton, 1991; Reboulet et al. 1999) for CJS models. The maximum structure

for variation in u , c , and p in MARK is a dependence by group, time and age (in

the sense of the time elapsed since ® rst capture) independently for each parameter.

For each state and group, MARK will present successive triangular matrices of

indices (Pradel & Lebreton 1991) (or parameter index matrices, PIMs; White &

Burnham, 1999) with (K 2 1)(K 2 2) /2 values that describe the variation of the

parameter considered over age and time. When the PIM is ® lled in with a single

number, the corresponding parameter will be constant over time and age. This

philosophy is familiar to users of SURGE and MARK. With s states and g groups,

MARK will present s 3 g PIMs for the survival probabilities u , s 3 (s 2 1) 3 g PIMs

for the movement probabilities c , and s 3 g PIMs for the recapture probabilities p.

Further linear constraints on transformed parameters can be applied via design

matrices. Only models conditional on the ® rst release are available. More re® ned

models can, in theory, be ® tted using SURVIV (White, 1983) for which a modi® ed

version facilitating the implementation of multistate models, MSSURVIV, was

developed by J. E. Hines (in Brownie et al., 1993, p. 1176).
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3 Biological relevance and case studies

The most direct interest of multistate models is for estimating dispersal, the very

purpose for which they were developed. Lebreton & Landry (1979) applied

Darroch’ s (1961) closed population model to study movements of Black-headed

Gull Larus ridibundus chicks before ¯ edging within a large colony. The landmark

paper by Hestbeck et al. (1991) investigates exchanges of Canada geese B ranta

canadensis between three large wintering areas (Mid-Atlantic, Chesapeake,

Carolinas), from one year to the next over K 5 3 consecutive winters, based on the

open population multistate models described above. The time dependent Arnason-

Schwarz model has 24 parameters, some of which are non-separately identi® able.

Interestingly, Hestbeck et al. (1991) both particularize the time-dependent model,

by equality constraints between parameters, and generalize it, by considering a

memory model in which birds that moved tend to come back with a greater

probability to the area used just before. Particular parameter values are assumed

for the interval after the initial release, since no information is available on the area

used before. In a capture- recapture context, the areas consecutively used are often

unknown, and a full likelihood approach raises speci® c diý culties (Brownie et al.,

1993) to which we will return later (Section 6). Taking advantage of the moderate

number of capture histories (63) with only three occasions, Hestbeck et al. (1991)

were able to compute the expected number of individuals in each capture-history,

and thus provide a goodness-of- ® t v
2 test for each model ® tted. This approach is

unfortunately impractical for large values of K .

The Arnason- Schwarz model and constrained variants are also a natural frame-

work for studying breeding dispersal (Greenwood & Harvey, 1982), i.e. dispersal

between successive breeding sites. Spendelow et al. (1995) studied, in that way,

dispersal of adult Roseate Tern Sterna dougallii between four colonies over 5 years,

with 80 parameters for the Arnason- Schwarz model. Speci® c constraints, such as

the e þ ect of birth site (birds had been ringed as chicks) were investigated in a

search for parsimony. However, the best ® t was obtained for the fully time-

dependent model. Site ® delity can be measured by the probability of coming back

to the same colony, conditional on survival, i.e. c ii
k . The estimates were, as expected,

very high, the smallest being equal to 0.825, and 12 out of 16 being above 0.900.

On the contrary, the capture probability varied greatly between sites.

This type of approach will certainly help to improve our understanding of

dispersal, for which long-term studies of colonial birds are a very relevant biological

model. In the ® rst phase, for many data sets, one may expect fairly robust estimation

from simple models with transition probabilities constant over time that will have

only a few more parameters that CJS models on data pooled over the sites. In the

second phase, more relevance could be achieved by modelling transition

probabilities with, for example, additive e þ ects of the origin and target population

sizes and of distances between sites. The movement probabilities are the most

numerous parameters, and that is where GLM ideas will be the most useful for

more relevance and parsimony. Besides the logit link, various generalizations have

been used (Multinomial logit: Almeras, 1996; Polychotomous logit, Fujiwara &

Caswell, in preparation) to keep the column sums of the transition matrices in

range. Besides a more precise evaluation of the merit of these various link functions,

speci® c re¯ ections on adequate constraints for the transition probabilities are a real

need. Further use of multistate models to estimate dispersal will have often to

account for age-eþ ects. While this is quite practicable, taking advantage of the
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PIMs in MARK, the model structure may have to be very speci® c, as we will

see later.

The next idea is to use multistate models with states de® ned by individual

covariates changing over time rather than geographical sites. Nichols et al. (1992)

estimate in that way transition probabilities between body weight classes in the

meadow vole Microtus pennsylvanicus. When the states are based on a strati® cation

of an originally continuous covariate, one could build speci® c constraints to reduce

the number of parameters even with a large number of states. This would lead in

the limit to time series models for the continuous covariate, with missing data

because of the recapture context. De® ning states in relation to reproductive success,

e.g. as breeder or non-breeder, provides canonical capture- recapture models for

trade-o þ studies, as proposed by Nichols et al. (1994). Several case studies based

on that premise concluded indeed that breeders at time t had a higher probability

of breeding at time t + 1 than non-breeders (Cam et al., 1998, Kittiwake Rissa

tridactyla; Tavecchia, 1997; Flamingo Phoenicopterus ruber; see also Doligez &

Clobert, this issue). This suggests that, as is often the case in such non-manipulative

studies, diþ erences in quality between individuals and /or microhabitats are promi-

nent and may have masked any existing trade-oþ s (Nur, 1990). Capture- recapture

re-analyses of existing data sets from manipulative studies, most often studied in

the past based on return rates, are still badly needed (Clobert, 1995).

Even when the transition probabilities are not of direct interest, and even if

survival is constant across states, it seems sensible to recommend a multistate

model for improving survival estimation, as soon as recapture probability varies,

e.g. as a consequence of diþ erences in eþ ort of recapture. A great part of the

heterogeneity of capture will be removed compared to a CJS analysis over pooled

data, with a limited lack of precision if constant transition probabilities can be

assumed as a ® rst approximation. This could also be advantageous in a closed

population context, for which generalizations of Darroch’ s (1961) model to more

than three occasions have still to be developed.

At this stage, the link is direct and very promising, with longitudinal studies with

missing data. Fitzmaurice et al. (1994) provide a good example of such data. They

analyse changes in weight (as two categories: obese and not obese) in a sample of

1014 children of both sexes. The study is over three occasions (1978, 1980, 1982)

which correspond also to a change in age (7- 9, 9- 11, 12 - 14 years, respectively).

The proportion of missing data is large since over 50% of the children have at least

one missing value. Such data are amenable to a multistate capture- recapture

modelling (Almeras, 1996), since the transition probabilities, such as Pr(non-Obese

at t + 1/Obese at time t), give potentially a good insight into the process. A

reanalysis of these data is given in Table 2. Unfortunately, Fitzmaurice et al. (1994)

Table 2. Longitudinal data (Fitzmaurice et al., 1994)

analysis by a multistate model: constant parameter

model results

Standard

Parameter Estimate error

Pr(Survival) 0.8709 0.0116

Pr(Recapture) 0.8997 0.0128

Pr(Non Obese/Obese) 0.1169 0.0104

PR(Obese/Non Obese) 0.2701 0.0285
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develop only marginal models, i.e. models of Pr(Obese) and do not consider

transitions. The dichotomy between models for longitudinal response and models

for transitions is clear cut in the analysis of longitudinal data (Kosorok & Chao,

1996). Fitzmaurice et al.’ s (1994) models can account for data missing at random

(MAR: the probability that a value is missing depends on the child’ s category at

time of sampling) or missing completely at random (MCAR: the probability that a

value is missing is independent of the child’ s category). The counterpart in a

capture- recapture setting is a state-dependent (MAR) or state-independent

(MCAR) probability of capture. The increase in Pr(obese) with age observed by

Fitzmaurice et al. (1994) (their Table 1, p. 610) is induced in the capture- recapture

approach from the diþ erence between the estimated transition probabilities (Table

2). We ® nd, based on AIC model selection, no eþ ect of gender on the transitions,

in accordance with Fitzmaurice et al.’ s (1994) results in which none of the z tests

for gender main eþ ects or interactions is signi® cant. More surprisingly, the survival

probability in our ® nal model diþ ers from 1, indicating that individuals may be

leaving the study permanently: in this case the probability that a value is missing

is slightly more involved than 1-Pr(capture) since it depends also on Pr(survival).

However, the latter being also independent of sex and time, the missing data

mechanism selected is still MCAR. The most severe inadequacy of Arnason-

Schwarz models for these data is that it works conditional on the ® rst value

observed. A more adequate model would be a multistate capture- recapture model

for a closed population, with the unusual feature that the population size is known,

in the sense that the history `000’ , corresponding to children selected in the sample

but for whom no obesity values were eventually available, is observed. In such a

case, a re ® ned modelling of the capture process is perhaps feasible, perhaps even

more than in the usual closed population models, in which population size is, in

general, unknown and is the parameter of primary interest. The analogy also

suggests that heterogeneity in the missing data process in longitudinal studies could

well be handled as heterogeneity of capture in closed population capture- recapture

models (e.g. Chao et al. 1992).

In the latter example, multistate models are viewed as statistical models for

Markov chains with missing data. This point of view was indeed considered by

Dupuis (1995) to frame the multistate models in the hidden Markov chain context

and develop Bayesian algorithms.

From the applications already available, the generality of multistate models seems

thus very promising for population biology. Still, all the examples or developments

cited Ð apart from the memory modelÐ are in a fairly restricted framework. Some

non-conventional applications open even broader perspectives.

4 A general framework?

A ® rst step beyond existing analyses is to consider age eþ ects in multistate models.

For instance, Gaillard (unpublished) investigated accession to reproduction in the

Roe deer Capreolus capreolus based on females marked during their ® rst winter,

using a model with two states (reproductive, and non-reproductive). As the study

took place in an enclosed reserve, the immature survival was not aþ ected by

dispersal and, although the probability of capture varied with reproductive status,

i.e. between states, there was no major heterogeneity of capture in a given age class.

This is no longer the case when non-breeders are not observed, as often in studies

of birds during the reproductive season, e.g. colonial waterbirds. Before full adult
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breeding propensity is reached, each age class comprises individuals with probabili-

ties of capture equal to 0 (the non-breeders) and greater than 0 (the breeders).

Age-dependent survival capture- recapture models are thus not adapted to such data

because of this intrinsic heterogeneity of capture. Clobert et al. (1994) developed a

model that accounts for this heterogeneity, and could be ® tted in the CJS framework

based on a splitting of the histories in two groups. Pradel & Lebreton (1999)

showed that this model could be viewed as a two-state (breeders and non-breeders)

age-dependent model, with triangular transition matrices (breeders cannot come

back to the state `non-breeder’ ), and a probability of capture equal to zero for non-

breeders.

This recruitment model admits a multisite generalisation (Lebreton et al., sub-

mitted). We give here just a brief account of the main ideas. With, for example,

three sites A, B, C, the total number of states is 6, since breeders and non-breeders

are considered as in Clobert et al. (1994): breeders in A, B and C, non-breeders in

the same three sites. For the sake of simplicity, these six states are denoted as A, B,

C, a, b, c respectively. A typical history is, for instance, 0a0AB0, for an animal

marked as young at occasion 2 in Site A, recaptured (or resighted) as a breeder in

site A at occasions 4, in B at occasion 5 and not observed at occasions 3 and 6, in

the latter case possibly because it is dead. When animals marked as young are

considered, the ® rst capture is always a, b or c. Since only breeders are detectable,

the states for non-breeders (a, b and c) never reappear in the recapture histories,

and the recapture probability vectors will always be alike (pa , pb , pc , 0, 0, 0). Survival

is considered as partly age dependent, with immature local survival from age 0 to

1, and `adult’ survival later. The stochastic movement matrices are described in

block-matrix notation in Table 3. The 3 3 3 sub-matrix B characterizes breeding

dispersal. The 3 3 3 sub-matrix N characterizes natal dispersal and is supposed to

take place entirely in the ® rst year of life. Intermediate movements cannot indeed

be modelled and N represents transitions between birthplace and the ® rst breeding

site. Afterwards, no more movement between sites is considered for non-breeders.

Accession to reproduction can then be represented by the probabilities of becoming

a breeder aik , depending on site i and age k. An assumption of full breeding adult

propensity, here at age 6, must be included in the model. There is no non-breeder

left afterwards. After ® rst year survival can be site-dependent, but is assumed to be

the same for breeders and non-breeders, an assumption already made by Clobert

et al. (1994). This is a key assumption of the model as will be seen later (Section

5, identi® ability). This model was applied to the metapopulation of Roseate tern

studied by J. A. Spendelow (Spendelow & Nichols, 1989; Spendelow 1991). Under

the ® nal model considered, the estimates of breeding and natal dispersal are given

Table 3. Structure of the transition between states in the multisite model of accession to reproduction,

here with breeding starting at age 2, and full recruitment at age 6. The B submatrix present at all ages

serves for breeders of unknown age marked in parallel to young individuals

k to k + 1,

Age 0 to 1 1 to 2 . . . 4 to 5 5 to 6 k > 6

Dispersal matrix W B 0 B diag(A2) . . . B diag(A5) B I B 0

0 N 0 I 2 diag(A2) 0 I 2 diag(A5) 0 0 0 0

Remarks Natal and Accession to . . . Accession to Full No more

breeding reproduction reproduction recruitment non-breeders

dispersal at age 2 at age 5 at age 6
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Table 4. Estimates of natal (N) and breeding (B) dispersal probabilities in

the Roseate Tern example (Lebreton et al., in preparation) (The probabilities

do not sum exactly to 1 because of rounding error)

0.582 0.004 0.020 0.885 0.009 0.007

NÃ 5 0.047 0.913 0.082 BÃ 5 0.023 0.976 0.013

0.371 0.082 0.898 0.092 0.014 0.981

in Table 4. The a ik are non-cumulative measures of accession to reproduction,

which can be converted into age-speci® c proportions of breeders calculated for an

ideal cohort in which all individuals are assumed to have survived until the age of

full recruitment (Clobert et al., 1994; Pradel & Lebreton, 1999). These age-speci® c

proportions of breeders are given in Fig. 1 (after Lebreton et al., submitted). As

expected, the intensity of natal dispersal was stronger than that of breeding dispersal,

with some degree of parallelism in the exchanges. Site A, which showed a marked

decrease in numbers, has the lowest philopatry probabilities. The rate of accession

to reproduction shows, however, little diþ erences between sites (Fig. 1), with good

evidence of full recruitment at age 5. Because of the clear distinction made between

natal dispersal, breeding dispersal, and rate of accession to reproduction, we expect

this type of model to be useful for many data sets with challenging questions on

dispersal.

Multistate models also constitute a natural framework for mixtures of information

(such as recoveries and recaptures) in individual history data (Lebreton et al.,

1999) (see also Pollock et al., this issue). For instance, Reed & Gauthier (in

preparation) use a multistate model for analysing the rate of collar loss in snow

geese Anser caerulescens. The states considered are `ringed’ (R) and `ringed + collar’

(C). The transition from R to C is impossible (c CR 5 0), while the symmetrical

transition probability c RC corresponds to the probability that an individual loses its

collar. A similar approach was developed independently by Alisauskas & Lindberg
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preparation, ® nal model).
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(this issue). Although Barker’ s (1997) general model does not seem to enter this

framework, many interesting mixtures of information can be looked at in that way,

such as mixtures of recoveries and resightings with geographical strati® cation, in

which local immature survival could be compared to true immature survival.

Another possibility would be to mix recoveries to a single-site recruitment model

based on resightings of breeders for improving the robustness of survival estimates,

and in turn estimates of other parameters, in particular recruitment parameters

(Torcel, in preparation). Mixing telemetry data with other types of registration is

another useful possibility than can be framed in the multistate context.

More robustness can also be achieved by using a robust design approach (with

primary and secondary recapture occasions) to multistate recapture observations

(Nichols et al., 1994). This approach has clear links with the development of

multistate closed population models that could be used for the secondary occasions

within each primary one.

From the possibilities just mentioned, it seems clear that much more can be

done. A ® rst direction is a more imaginative building of states, by combining

several categorical covariates de® ned at the individual level, by mixing such

individual covariates with geographical sites, by using unobservable states etc.

Secondly, more imaginative ® eld designs could be used. Thirdly, more complex

statistical models need to be developed: a few foreseeable developments will be

mentioned in the discussion.

5 Numerical and statistical diý culties

Multistate models are recent and, despite the exciting prospects they raise for

population biology (Clobert, 1995), it is not surprising that several numerical and

statistical diý culties have to be solved. Although the points we review here are

fairly technical, they are of great importance.

The complexity of the likelihood and the often-large number of parameters in

multistate models, when compared with single-state models, are expected to raise

more numerical and statistical problems. At least three problems are common:

boundary estimates, identi® ability problems, and problems of local minima, some-

times in combination.

Even when estimates of probabilities are constrained to be in range by a link

function, many estimates will tend to hit a boundary. The eþ ect on model selection

is poorly known. In practice, most of us will count such parameters as identi® able

in the calculation of AIC or of degrees of freedom in LRT tests. However, the

asymptotic results that serve as a justi® cation for this are valid only for parameters

not on a boundary. Monte-Carlo simulation is the more straightforward approach

to explore this issue, e.g. by using parameter values close to a boundary, and to

see how distributional properties of the deviance are aþ ected by estimates on a

boundary. Results would be bene® cial to many other models, such as recovery

models.

We will illustrate identi® ability problems using expected values generated in a

simple case for Clobert et al.’ s (1994) recruitment model. As mentioned earlier,

this model can be represented as a model with two states (breeders and non-

breeders), the latter being non-observable, and age dependence in survival and

transition probabilities (Pradel & Lebreton, 1999). When the probabilities of

survival of after-® rst-year breeders and non-breeders are left unconstrained, the
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Fig. 2. An illustration of identi® ability problems in multistate models: pro® le deviance in a recruit-

ment model applied to simulated data as a function of the probability of survival of breeding adults.

A: Horizontal solid line: survival of breeders and non-breeders vary independently: the deviance does

not change with the survival of breeders; in the absence of a minimum, the parameters are not

identi® able. B: Continuous curved line: the probability of survival of breeders and non-breeders are

forced to be equal, which makes the parameters identi® able. The dotted line is the parabolic approxi-

mation to the pro® le deviance.

parameters in the model are not separately identi® able, as illustrated (see Fig. 2)

by the pro® le deviance as a function of the probability of survival of the after-® rst-

year non-breeders. The pro ® le deviance, i.e. the deviance as a function of a focal

parameter and simultaneously minimized with respect to the other parameters

(Fig. 2) will be constant in the case of identi® ability problems. In our example, as

soon as the non-breeders are assumed to have the same probability of survival as

breeders (Fig. 2), the parameters become identi® able. The detection of non-

identi® ability by numerical approaches presently does not seem totally reliable (see

the comments on numerical rank by Viallefont et al., 1998). A formal detection

(Catchpole & Morgan, 1997) is made diý cult by the complexity of the likelihood,

although it can be used with success in some cases (Gimenez & Choquet,

unpublished results). Because of the risk of widespread non-identi® ability in

complex multistate models, we recommend pro® le deviance plots be systematically

examined in any data analysis.

In maximum likelihood estimation by iterative minimization, there is always the

risk of converging to a local minimum of the deviance (Fletcher, 1987). The only

formal insurance is to have a convex deviance. This is not even sure for the CJS

model, although there is no report of convergence to a local minimum reported,

and the deviance looks convex in simple examples (e.g. Reboulet et al., 1999,

Fig. 2). Several people besides us (Dupuis, personal communication, White:

MARK Forum, Summer 2000) have independently detected local minima of the

deviance of multistate Arnason- Schwarz models with some data sets. In Fig. 3, we

show such an example, using again the pro® le deviance, for female roe deer data

over two states (with fawn, without fawn) obtained by J. M. Gaillard (see for

example, Gaillard et al., 1997). The quasi-Newton methods in SURGE and MARK
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Fig. 3. An illustration of local minima in multistate models: pro® le deviance of a two-state model

applied to roe deer data as a function of the probability of survival } . While the Maximum Likelihood

Estimate is equal to 1 (boundary estimate, corresponding to the overall minimum of the deviance over

the interval [0,1] equal to 885.547 , horizontal dotted line), the deviance presents a local minimum

equal to 886.454 in } 5 0.2476.

oþ er limited protection against convergence to a local minimum by line search at

diþ erent distances in the direction chosen at the current iteration in the parameter

space (Fletcher, 1987, p.33 þ ). The ease with which examples of convergence to

local minima appeared tells us that this protection is insu ý cient in the case of

multistate models. Before more sophisticated algorithms (Brooks & Morgan, 1994)

or improved initial values (Gimenez, in preparation) are developed, we recommend

systematically checking the results by picking up a few diþ erent sets of initial

values, well apart from each other, and checking diþ erences in the deviance

obtained. In our experience, any sharp change in estimates, in particular of the c s

and ps between models with similar structure could also be an indication of the

lack of global convergence in one of the models. It is unclear to us whether the

existence of local minima is only a by-product of sparseness or lack of adequacy of

the model, i.e. they will disappear asymptotically for data generated from the

model, or if they are more structural. Hence, there is here a clear need and room

for further statistical and numerical research.

A ® nal unrelated issue, Goodness of ® t presently raises large diý culties for

multistate models. Statisticians have kept repeating that goodness-of- ® t is critical

for adequate statistical model selection (e.g. Kendall & Stuart, 1961, p. 420).

Within a set of models in which none ® ts the data, all diþ erences in deviance

between models tend to be in¯ ated. Model selection using the deviance, as in LRT

or AIC-based model selection will tend thus to give unreliable results. The toolbox

for checking model ® t for multistate models is presently inadequate. A ® rst solution

when K and s are small is to enumerate all capture histories, to calculate expected

values under the ® nal model and estimates, and use a v
2 test (Hestbeck et al.,

1991). The number of capture histories is equal to (s + 1)K 2 1 2 1 if there are

releases in all states at all occasions, and is rapidly prohibitive: s 5 5 and K 5 11

produces 60 466 175 capture histories! Even when this approach is practical, the
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low expected numbers in many cells raise a problem of sparseness. The v
2

distribution under H 0 (the model ® ts the data) is known to be shrunk towards zero

with sparse data, as well as that under H 1 (the model does not ® t the data). As a

consequence, the power of the goodness of ® t decreases to an unknown degree.

Resampling and simulation techniques oþ er an alternative to determining the

distribution of a goodness-of- ® t statistic such as the deviance under H 0 . This is the

principle of the Monte-Carlo simulation (or parametric bootstrap, Buckland &

Garthwaite, 1991) test provided in MARK. The existing literature on the distribu-

tion of v
2 statistics under sparseness assumptions (e.g. Zelterman, 1987) has not

yet been fully exploited and could prove useful. These comments are relevant to

the calculation of the over-dispersion factor as well, and also apply often to single-

site capture- recapture models.

Unfortunately, the deviance, as a test statistic, is omnibus, in the sense that it is

not sensitive to speci® c alternatives of interest (Cox & Hinkley, 1974, p.68). At

least one test for speci® c alternatives is available, concerning memory models

(Brownie et al., 1993). There is nothing comparable to the optimal decomposition

into interpretable components of the Goodness-of-® t tests of the time-dependent

Cormack- Jolly- Seber model (Pollock et al., 1985) as implemented in RELEASE

(Burnham et al., 1987). In fact, the technique used to obtain these components

does not work with multistate models (Wintrebert, 1998) because individuals alive

but not captured are in an unknown state. Further research pending, if we keep in

mind the criticality of the goodness-of- ® t issue, only a series of ad hoc procedures

may be recommended: (a) run the goodness-of- ® t tests on data reduced to a

single state, or based on capture- recaptures within each state (Lebreton et al.,

in preparation); (b) use parametric bootstrap (Buckland & Garthwaite, 1991)

(implemented in MARK only for single state model); (c) use speci® c tests such as

the test for a memory eþ ect (Brownie et al., 1993). Given these unresolved

goodness-of- ® t issues and the complexity of the multistate models, a step-up

approach starting from a simple model and moving to more complex models can

be a good strategy, at least until more sophisticated tools will make it possible to

proceed in a step-down procedure from a model of which the ® t has been duly

checked, or to broadly apply model selection criteria.

To stimulate further analyses, some multistate data sets (together with single-

site capture- recapture data sets) are made available with commented treatments at

the following address: ftp: / /ftp.cefe.cnrs-mop.fr /biom /Soft /CR (® le Case-Studies.

Zip).

6. Discussion

Despite the numerical and statistical diý culties just mentioned, the progressive

generalizations examined above open the way to much broader generalizations of

a multistate approach. Here are two further generalizations presently under study:

multistate growth rate models and models with uncertainty on individual state.

Pradel’s (1996) growth rate model (Nichols & Hines, this issue), based on a

simultaneous estimation of probabilities of survival } and seniority c , can be

generalized to a strati® ed population (Lebreton et al., in preparation). In a forward

multistate analysis, one can estimate survival- transition matrices U i , and in a

separate backward analysis, diagonal seniority matrices C i + 1 , e.g. in a time-

dependent context. The basic idea for a multistate model of population growth is

that population size vectors N i and N i + 1 are related through the vector of the
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numbers of individuals present in the population, both at times i and i + 1, classi® ed

according to their state at time i + 1, denoted as S i +1 :

S i +1 5 U iN i 5 C i +1 N i +1

Hence, the vectors of population sizes are related as:

N i + 1 5 C 2 1
i +1 U iN i 5 K iN i

The set of matrices K i could then be submitted to some ergodic and /or spectral

analysis, under a variety of assumptions (constancy, constancy + random time

eþ ect etc), in order to develop further links with matrix models in a ® xed or

random environment (Caswell, 2000; Tuljapurkar, 1990). A likelihood approach

considering simultaneously the backward and forward analysis, generalising thus

that of Pradel (1996), can be developed (Lebreton et al., in preparation).

Often, even when an animal is observed, its true state is known with some

uncertainty. For instance, a bird observed on a breeding colony may be a non-

breeding prospector and the status breeder /non-breeder is known with uncertainty.

Similarly, the sex judged in the ® eld from behaviour may be subject to error. Still

another example is that of a bird seen, thus known to be alive, with no record of

its reproductive status. Those situations, although fairly common, are not amenable

to traditional multistate models, which suppose that the state of an observed animal

is identi® ed without error. The solution seems to go through the consideration of

an intermediate level, that of the possible events of observation which are subsets

of the set of original states (Pradel, in preparation). These events are then related

to the true underlying states by a matrix of conditional probabilities, which can be

seen as a generalisation of capture probabilities:

p 5 f
prob(event 1/state 1) ¼ ¼ prob(event 1/state n)

prob(event 2/state 1) ¼ ¼ ¼
¼ ¼ ¼ ¼

prob(event m /state 1) ¼ ¼ prob(event m /state n) g
The capture probabilities still appear in the cells along with other parameters.

Here is such a matrix for the problem of the identi® cation of sex:

p 5 (
px x py(1 2 y) 0

px(1 2 x) py y 0

1 2 px 1 2 py 1 )
The columns correspond to the true states: female, male and dead, the rows to

the possible events: `judged female’ , `judged male’ and `not encountered’ .

x (respectively y) is the probability to correctly identify a female (respectively a

male), px (respectively py ) is the probability of encountering a female (respectively

a male). The combination of transition matrices between true states and of p -

matrices permits us to write the likelihood. Although potentially important, those

multievent models are likely to suþ er from identi® ability problems. Fujiwara &

Caswell (in preparation) develop similar models. The memory model enters also

this framework. With two states A and B, the probability of transition will diþ er

between individuals with earlier histories, say, AAA and ABA, respectively. An

individual with earlier history A0A can have been in either state at time 2, i.e. its



Multistate recapture models 367

state at time 2 is uncertain. As mentioned earlier, this diý culty has precluded up

to now a full likelihood approach to the memory model, which becomes possible

in the multievent framework.

This is but a few examples of what we can expect in the future. Nearly all

generalizations of one-state models can be looked at, including probably a variety

of models for closed populations, with an interest on transition rates rather than

on population size. We expect in most cases that matrix notation will greatly

facilitate model development. The gain in relevance for many biological issues

dealing with individual variability is expected to be especially high, in particular in

relation with the development of remote-monitoring of individual characteristics

by electronic devices (Croxall, 1998), which bridges longitudinal data analysis with

missing data and traditional capture- recapture analysis. The cost in terms of

parsimony may be partly alleviated by the systematic use of generalized model

ideas to develop constrained models. The main diý culties will be for handling the

statistical and numerical issues we reviewed (identi® ability, local maximums,

goodness-of- ® t). Hopefully, general procedures and development of software will

help in solving these diý culties. Because of their generality and of the variety of

biological questions they can uniquely address, we expect a multistate model to

play a growing role in the development and application of capture- recapture

methodology.
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